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Brain Anatomical Structure Parsing
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Why Is the task important?

s Sub-cortical and cortical structures are of
great anatomical and clinical importance.

= Their shapes provide viable information about
brain growth and various diseases.

= We can use these anatomical structures as key
landmarks to register different brain |mages---
for us to study the brain atlas and statlstlcal
properties.




Element of a disease-specific atlas
(Thompson and Toga 2004)
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Mapping hippocampal change In
Alzheimer disease (Thompson et al. 2004)
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Cortical thickness mapping In
Willlams Syndrome (Thompson et al. 2005)
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Challenges for Manual Annotation

Large volume size for high resolution 3d MRI. (a typical size of
300x300x300)

Complex protocols for different cortical and sub-cortical structures.
Lack of efficient 3D tools for annotating the anatomical struct.urga\

Hard to guarantee consistency among different neuroanatomistsi!

It is very time-consuming to fully delineate the brain anatomical struc_"'j S,
even for a single volume. (It usually takes weeks or even months.) = & ‘




Complex Protocols

Surface Curve Protocol
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Compiled Image Registration, Segmentation, and Masking Protocol (5/02)

This is the protocol cmrently in use by EDEVEL group. (analyses: YALE, YALE2, leonard)

+ Unix Commands
« Display program manual

Image Registration
Segmentation

« white matter

o gray matter

o osf

« background

Brain Masking




Challenges for Automatic Segmentation

Large volume size for high resolution 3d MRI. (a typical size of
300x300x300)

Very weak intensity patterns. (large inter-class similarity and intra-
class variation)

Hard to capture 3D shape info due to the high dimension space *and 8 |
limited number of training data.

Hard to capture the high-level knowledge and adapt to dlffereﬁt__ | .
protocols. :




Framework

Learning based approaches to capture
complex appearance models by
Integrating a large number of cues
(intensity, curvatures, gradients)

Annotated -+ Global shape prior.
Database

—» A 3D representation to efficiently
perform surface revolution.

To learn a hybrid discriminative/generative model to "--
capture local and global shapes, and complex appearanc\ef%-'z*.
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A Learning Based Approach

A learning based algorithm to perform efficient
and effective brain structure parsing.

The algorithm implicitly and explicitly combines
nundreds of features to model complex objects.

t I1s up to the learning procedure to learn

protocols from examples, and is highly adaptive.

Has nearly no parameters to tune.

Explicit 3D representation can represent Ly
arbitrary number of regions and perform fast_'_f' W
surface evolution. :

Has the potential to outperform human expert_.'__s'-.'-:-'*'"15;1,%l

P

==




Bayesian Model
Input: Solution:  NASIGSTIAPIRTIAS.

It Is very hard to learn and

P(W |V) < p(V |W) p(W) BRIl R GERIEE RN

and prior p(W).
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Discriminative v.s. Generative

For a data sample: and its class label:

=

Positives, y=+1 Negatives, y=-1

Discriminative model: p(y | 37)

_ plzly)p(y)

Generative model: (33|y)7 p(y) t) = Zyp(a:|y)p(y)
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Discriminative v.s. Generative Models

methods.

*Discriminative models are easier to learn/compute.

*They are focused on discrimination and marginal
distributions.

Its modeling power is limited since y is just a label.

*If you are asking, " ?",
then you would probably want fo use discriminative

methods.

o(x|y), p(y)

m '
-Generative models contains richer mfor'ma’rlon

*They are focused on single class. M
*They explain the underlying generation proceﬁ

» If you are asking,
then you would use genem‘nve i




Discriminative Models

E, = Y —logp(l, =i [V(N(S)

=1 =R

Discriminative (classification) model based on alocal
volume patch.

(1) It I1s capable of capturing complex appearance model —
based on alarge context.

(2) Has much more representational power than i.i.d model S@*f-. S

(3) Easy to learn and compute than afull generative model.




Probabilistic boosting trees . m, iccv 200s)




Features

Around 10,000 features in the candidate pool: Gradients, Curvatures, Haars

(1) Very fast to compute using integral volume.

) Combine information at different scales.




Discriminative Models
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Input
P, =1IV(N(9))
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Shape PCA Priors

1. Building priors on 3D shapes is challenging.

2. Signed distance maps give an easy implementation.

mode 1
mean mean - O mean + O

o e

synthesis (random sampl es)




Hybrid Discriminative/Generative Models

E:alzz_log p(v,l, =i |V(N/s))+ pseudo-likelihood
-1 =R, appearance model

azz_log pPCA(S|)+
1=2 i=1

global shape prior local smoothness prior
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3D Representation

| gl Region 2 Surface
' Evolution

Region 2

X-Y plane

3D grid-face representation




The Algorithm

Training (given a set of annotated volumes):
(1) Learn multi-class classification model using PBT.

(2) Learn PCA shape model for each structure.

E=,) Y ~logp(, =i [V(N(S)+, Y ~log p(S) + Y ~A(S)

i=1 =R =2

Testing (given a volume)
Compute classification using learned PBT.
Obtain the initial segmentation.

Perform region competition based on the proposed
3D representation.




Results




Results on The Training Data

Manual annotation

Automatic segmentation




Results on The Training Data

Automatic segmentation




Results on The Testing Data

Automatic segmentation




Results on The Testing Data

Automatic segmentation




training

Left Hippocampus
Right Hippocampus
Left Caudate

Right Caudate

Left Puteman
Right Puteman
Left Ventricle
Right Ventricle

testing

Left Hippocampus
Right Hippocampus
Left Caudate

Right Caudate

Left Puteman
Right Puteman
Left Ventricle
Right Ventricle

Evaluation

precision recall
0.694 0.779
0.675 0.715
0.856 0.853
0.835 0.849
0.785 0.701
0.779 0.781
0.914 0.817
0.910 0.815

precision recall
0.686 0.766
0.620 0.644
0.842 0.806
0.811 0.825
0.746 0.682
0.751 0.721
0.904 0.808
0.897 0.813

Hausdorff distances
6.638 10.384
9.975 11.863
6.610 7.899
4.988 8.606
10.441 10.343
8.552 9.673
5.592 16.007
6.022 13.915

Hausdorff distances
6.729 12.082
14.284 13.576
7.961 8.123
6.694 8.525
10.155 10.594
10.079 9.443
6.345 11.432
6.904 14.675

mean variance

1.872 0.532
2.213 0.517
1.303 0.244
1.332 0.361
2.474 0.780
2.006 0.390
1.117 0.386
0.994 0.131

mean variance
e
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Automatic Sulci Detection
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Results
Prob

Results on Training set: Central sulcus




Results
Prob




Results on Surfaces
Prob




Evaluation

H(C,G) = Xm'”HC gll, Haw(C,G) = >y mIan q|
€C ¢ |O| cEC’

Dataset

Testing (Central on MRI)

Central (Central on MRI)

Testing (Superior Frontal on MRI)

Training (Superior Frontal on MRI)

Testing -ntral on surface)

Training (Central on surface)

It is a general framework and it works either on MRI volumes‘g_l;-_____ _
extracted surfaces.

i
L

There is nearly no parameter to tfune and learns the discriminatiye
models from examples.

Does not need to specify which major cortical sulcus.

No segmentation is needed, nor the process of mapping to a canom?!t;ll'
view.

The algorithm is robust and fast.




